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Classification Using Small Fuzzy Biologicâl Data Sets

Abstract

In this paper ÿe exanine î 24 methodr useà to iàe nîy
popülanons îron weLL-described closelr related species.
ReaL nznatological data is used to assess the potential
and limitations ol seÿeral methods. A method is
iniroùrced to haadle lirge numbers of attàbutes. Borh
crisp and luzzy represeùtations ol ,he data a.e
inÿestigated

1. Introduction

In tll a classification method is presented usins local
represertâtion by fuzy nrles, where a data set is used for
training ând leârning mcthods âre provided to adjust tùe
grades ofcenamty facùors in the rules Related results are
found in [2] using multiple paniûons but not leaming.
Both derive fuzzy rules using crisp dâta for the tsahing
sel Other methods using distânce metrics may be found
in t3,41.

In this paper we invesrigate the ca.s€ where the data sets
âre tseâted âs fuzzy values. The methods of [1,2] seem
more natuml to explore given the nâtue of our dâlâ. In
particular, in descriptions of nemâ@de species, it is most
common to have a Inean and nge given for each
meâsurement; less o{len â meân ând statrdard deÿiation
me given Eâch meân ând mnge is derived Èom â sample
of ten to twenty specimens from a single Popùlation. This
specimen dâlâ is usually not published due to volume of
dalâ. Consequently, for â well-described species. means
ând rânges for a dozer ü so populations are published.
For â clâssification problem this size (râining dâta sei
would be considered mther small. (No!e that lhis would
be called an identifrcauon problem in biology since the
purpose is to use known classes, the lraining datâ, to
develop rules thât cân then be used to âssign üDktrowrs,
to one of th€ classes.)

For two closety retâted, well described species,
distinguishing between unknowns can be very difficult
ând may ultimâtely rely on quanütative data, iypically
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meâsurement§. In [5], Fortuner shrdied iwo sùch species,
Helicotylenchùs dihystera, H.d., and Helicotylenchus
pseudorobustus, H.p., using descriminant functionâl
analysis, DFA. However, this method is more dâta
inlensive since ir relies on dalâ lor individual specimen.
which âs meniioned is not generally âvâilable in the
literâlure. SimilâIity methods hâve âlso been use4 which
are l€ss dâtâ intensive âs only rneâns are required, [6], but
they hâve the dmwback of not âssigning an unknowr to a

Our objective her€ is to investigate the feasibility of
using the fuzzy rule-based methods of tll for
clâssification of well described species using the ümited
âvâilable dâtâ consisting of meâns and ranges In doing
this we present ân algoriihm that cân exterd the methods
of trl, and t2l, !o identily unknowns in some cases when
the nwnber of attributes is large.

2. Fuzzy rcpre,sentation and rules.

lYe wifl use dle datâ of Êom [5] for 11 populaüons of
H.d. , denoted Da, ..., Dk, ând 1l populations of H.p,
denotÊd, Pa, ..., Pl for the fiâining data. except for Pe,
which has been reclassitred as H.d. For the unknowns.
we wifl use ûe r0 populâtions of H.d., denoted Dha, ...,
Dhj, and 5 other populations H.flatus, H.nannus,
H.microlobus, H.bradys, and H.phale s. The firct two
are synonymous with H.d. and lhe last three with H. p.

We do not use adficially-generâted dâta to tesr our
methods Therefore, the conclusions we drâ., ùe based
on real daia and this gives a good p€rspective on the
possibilities and limitations of rhe nethods.

Meâsurements for eight characiers (atiributes) âre
considered for eâch of the populations. They are: the
lenglh of the body, LON; the Iength of the oesophâgus,
OESi the length of the stylet, STY; the position of the
phasnides, PHAS; the length of the prccess lerminal,
PROi the length of rhe tâil, QUE, the diamerer of rhe
body, DVU; and the number of tail ânnuli, TAN. The
dâta for the fiI§t seven of tlrcse can be found in [5], pp.
194 222i thât for PRO is unpublished. The domâins for
eâch chârâcter âre shown in Table 1.
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Table 1. Characters and domains

For a given population and each chârâcter üe mean, i .

ând the rânge will be reFesented by a triangular
membership function, with the vertex at the ûeân, wilh
membership value 1 .0, ând range for i§ support. An

exâmple is shoM in Figure r(a) where i= 24.88, with
range 23.5 - 26.5 for tho chdâcter STY. I-aber we rvill
bricfly mention the effects of using trEpezoidal functions
to represent the fuzzy data

As in t1l, each domain will be pânitioned inro K-l
equal intervâls to creâte K membership functions
rQrêsenting â fuzzy grid for the domâin. Each boundary
point of eâch intervâl will serve as the vertex of a

tsiangular menbership tunction with support belween its
neighbonng boundâry points, except for lhe membeEhip
functions at the ends. Cleffly the scales are not the sâme
on each âxis, bùt âs in ttl, tàe size of the srid, i.e., K, for
each âxis wifl be the sâme. A member of the grid is

denoLet nL wbere i is rfie index ot the chamcter, whrchtt "
for our application will be the index shown in Table 1,

ard i is the ith rnember of the grid. An exâmple for K = 5
ând the domair of the character LON is shown in Figure
l(b).

The membemhip frjnction for Af, will be desrgnareo' tr

frI, . rr * i" â crisp scâlâr then il§ vâlue for rbe gfld'Jr,
funcLion.r{. is eiven bv the membershiD runcüon)t "
u[.txt. wten x is a ruzzv dâtâ DoinL the value is'Jr

- K -K(l) aji(x) = mâ-rluji«yr,x(yll.

TtDs is simply the greatest common value tor x and Af,
Jr

[7]. For exanple, in Fisure 2(a) the lhird grid function
for the characùer LON, which has index l, ând K = 5, is

Ai I evaluâled âr ù'e (crispr scâlar x = 675 5 lo yield

(a) Fuzzy data for STY

6m

@) A f,rzzy grid for LON

Figure 1. Fuzzy functions.

(a) LoN
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Figure 2. Evaluating crisp and Iuzzy data



tti y'675.5, = 0.755. when r is â tuzzy scalâr given by

the mean, 675 5, and rarge, 584-0 - 737-0, shown also in

Ficure 2(a), ai 3(x) = 0.848

When xp = (xl, ...., xn) is a multidimensiônâl data

point, where each component xj is â fuzzy scalar

repEsentins a meân ând rânge tbr characterj, ând AYr is
Jr

l
rhe i.ü grid fi:nction for thejth character, j = t, ..., n, we

J
designate the prcduct operator

t2\ II aÏ 1r,,
J' j

where xiu) is used in (l) io place of rly). lnsread ot
using aliot the chancters given in Tâblc I will often u.e
just â subset of these chârâcters to form our rules. For
those chamcters not selected, then fâctors will not appear
in (2). For example, if we select just two characters,
LON, index 1, and STY, index 3, then using the fuzzy
data for LON and the g d function ftom Figure 2(â),

represenred by x I ând Ai r. ând if lhe dâla for STY is

given by x3 with mean 24.88 and range 23.50 - 26 50,

ând tâkiog tbe gid tunctjon Ai 2. sbown in figure 2(b),

then the value of (2) will be 0.848 + 0.740 = 0.628.
Continuing this exâmple, a rule using jusr these tlvo
chârâcters ând lhe given grid functions in Figure 2 would

rx16{, andx3 is42

then xp belongs to H.d.with CF= 0.,163.

CF is the c€Ilainty facùor of the rule, which indicâtes tlrc
strength of the conclusion thal xp is in the class H.d. (xl
and x3 are the component value"s of xp.) The degree that

the data point xp satisfies this rule is the pmduct of (2)

and the CF, i.e , 0.628 + 0 .463 = 0 29t.
The creâtion of â rule for a subset of charactcls consists

of taking a grid function from each domain for these
characters and then debermining the clâss, H.d. or H p.,
and the CF. To do this, each dâtâ point in the taining set
that belotrgs to H.d. is selected to compute (2). These
results are summed to form pl This is repeated for
points in H.p. to produce P2. If Ê 1 > p2, then the clâss
in the rule is set ro bc H.d.; if Ê2 > pl, thê clâss is set
to beH.p.; andif Pl = P2, then no clâss is specified by
the rule. The CF for the rule §
(3) lBl - F2lllpl + p2l.

In [1,2] once a rule-base is consrrucred, ên uûknowl
data point xp can be ldentified in tbe following way: For
each rule rn the rule-base, conpute (2) for xp and
multiply by the CF for drc rule. Tâke the maximum value
ml lor rule, where rhe class i. H d. and lhe mdimum
m2 for rules where the class is H.p., ând if the ml > m2
üre unknown is deremined ro belong to H.d.. or}lerwise ir
is determined 1() belong to H p , except in ties where the
class is nol delermincd. The confidence level is lml -
tr.2l. Unless stated otherwise, when we construct a
rule bâse the same subset of chffacters are used for each
rule in the rule-bâse When â sùbset ofcharacùers is used,
the inierpretâtion of clâss memberchip is relative to the

3. 3-way ordering of characters.

For eighl chdacters, even â grid with K = 5 would be
fâr too big since it would potentiâlly generate 58 =
390,625 rules. As an altemative we srân by ordering the
châracters by meâsùing their efficacy in identijying the
Eâining set after tlaining is completed

Using only one character at a time for the training set,
wilnout leamins [1], and K larse since only one character
is involved, each character is assessed. The results are
shown in Table 2(a) There the number of incorrectly
identified training patterns is given, and ihe totâl
confidence level is computed summing each correctly
identified training point minus the coddence 1eve1 for
each improperly identified poinl. This is then repeated
for two chnacters at a time, using the best two chaücbers,
PRO ând STY, in combinatior with each of the next two
besi, QUE a LON. with the results shown in Tâble
2(b). Since two groups (PRO,QUE) âtrd (PRO.STY) in
Table 2(b) have the lowest score in terms of the rumber
inconectly identified lrâining points, i.e., a[ are correcdy
identified, ând sincc thcro is a common charâcter, PRO,
we taïe (PRO, STY, QUE) to be the best tkee-charâcier
combinâtion. This combinâtion could also be viewed as
hâving incorrectly identified 3 since it can be obtained via
the second and lasi enties in Table 2(b) One could
therefore argue in favor of other heuristics srch âs the
hishest rotal score, which would sive (PRO, STY, LOIO,
or ûesling for the best lriple among the best twô.

This can be repeated with all æmaning charâcGrs, (o
ger the next best tfuee-character set. For our set, the next
best was (LON, DVU, PHAS), !ÿith the last sei (OES.
TAN). We will rcfer to this as 3,way ordering of the
characteN. If foù châiâcters remain at the end, they can
be decomposed inlo two s€ts of two characters. Based on
this heuristic the châracters were givetr the descending
order PRO, STY, QUE, LON, DVU, PHAS, TÀN, ând
OES.



4. Fuzzy ÿs. crisp training dâtâ.

In addition to examining the feasibility of usiry firzzy
dâta to distinguish ctosely related sp€cies, we also
exâmine whether there is any advântâge in ùsing fuzzy
datâ instead of crisp dâtâ for the training sets. ln what
follows fuzzy daia will âlways be used for testing
unlmowns as it is generâlly better ând more reliable to test

a sample of â dozen specimen fmm ân unkDoM râther
than a single specimen. When testing ùe trâining dâh we
shâll use fùzzy data for testing when fuzzy dâta is used

for Eaining and crisp for testing when crisp data is used

for training. The assumption in the latter câse being that
only cnsp dâta is available.

* IncorrecE Total

(b)K=20

Table 2. Ranking the characters

Using jusr 23 crisp data points (mesns only for
our 23 trâining populations Dâ - Pl) for each charâcter it
woutd âppear to be too little dâtâ rcsulting in too few
rules for lhe conesponding fuzy subspaces. Ot lhe other
hâtrd, using firzzy datÀ mighr implicitly expând lhe dâtâ
set resulting in fcwer missing rules for the fuzzy
subspâces.

Indeed, when the best five characteÉ (1,3,5,6,7 in
Table l) with K = 5 were used the crisp dâtâ set
produced 259 rules, which is one tenth lhe size of the rule
base,2,287 rules, using the fuzzy data. tn both cases,

rules with CFs less than 0.1 were eliminated and not
counted. Somewhat unexpectedy dle mâjority of rules in
eâch câse, 220 for the crisp Eaining dâlr, and 1,457 for
the frEzy trâining data, had CF's = 1.0. This is due to th€

fâct that (3) will always produce lhe value 1.0 whenever
one of the P's is zero, even if the other one is very smafl
Cleârly then ftom the point of view of the rule bâse size,
the crisp approach is preferred, ând from the

completeness of the rule bâs, the lirzzy approach would
seem betùer. While we didn't test this here, one would
exp€ct that the forgetting algorithm of [r] could be used
t o reduce the number of rules.

The best five chaEcreF. were also used for compùing
cnsp and fuzzy dâtâ for training, since using âtl eight
characters presenls problems wirh lhe rule bâse size.
Four rule bases eâch for the fuzzy data ând the crisp dâtâ
were creâted. One of the rule bases was created using the
bert two characters, PRO and STY, one using the best
three characters, one the besl foü, and one the best five
The values of K were 20, 10, 5, and 5, resp€ctively, wiih
K alecreâsing as nec€ssitâted by the combinâtorics. Tâble
3(â) sho'rs the res'rlt§ of testing the hainirg populations
where the training and testing data àrc frzzy. Fot
exanple, fol the rrrs( column the confidence level is
shown for eâch population where the besl 2 characters,
PRO and STY weæ used to create ihe rule-base with K =
20.

Noteworthy is thât rhe confidence levels for each
population !e s to decreas€ considerably as the number
of chaÉctels increases from two to five. This is due in
pan to lhe coarser grid a5 K necessarily decrea5es, in pân
r,o the additiotral number of fâctors in comprting (2), ând
in parr to the descending order of the characters. The
same holds true for crisp dâta as se€n in Table 3(b).

while the fuzzy data hâs some of the highest
confidence levels and the highest avemge, it also hâs the
lowert confldenc€ levels in comparison to crisp data- One
population mis-identified. No ûâinirg, [1], was used to
compare fuzzy and crisp dâtâ. Using trâpezoidal
functions to reFesert the training dâta tends to funher
increase the confidence levels of the stronger populations
and decrease those of the weâker ones.

5. The 3-way ordering algorithm.

In order 1o handle eight charactem we present a method
bâs€d on the desc€ ing order of characters using the b€st
chaftcGrs' confidence levels to offset those for characterc
where they are lower. In addition, grid sizes do not need
to be reduced âs ùe number of chàraclers increâses, âs

one could ârgue thâl â ûnel glid is âlso rccessâry for the
more difficùlt chârâcten.

As suggested by tiese considerations we propose the
following algorithm âs â meâns !o boost lhe confidence
levels of ihe trâining set and to hândle larger sets of

The 3-way orderiry algoritbm:

0 Set a value of K for the partition as in the adêptive
method [1]. The value of K should be selected to creale
as fine a partition as desired without creating an
excessively lârge le base assuming thât three characterc
will be used ât â iime

LON
oEs
STY
PllÀS
PRO

QUE
DVU
TÀN

PRO, LON
PRO, QUE
PRO, STY
STY, LON
STY, OUE

5.1
1.1

tl .7
2 -A

13.1
4.8
2-4
0.3

t4-1
t2.9
16.5
Lt.7
11. 9

6
10

2
8

2
4
,7

9

(a) K = 20

1
0

0
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3
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r 20
345

15 105

Da o.a46 o -77o 0,538 0,429
Db 0.832 0.704 0,433 0.3?8
Dc 0.802 0,596 0,694 0.621
Dd 0.188 0,103 0,037 0-050
Dê 0,50? 0,330 0,140 0-107
Df 0.828 0-481 0-503 0-398
Dq 0,532 0,372 o-731 o-096
Dh 0.521 0.a19 0 306 0,238
Di 0,607 0.394 0,255 0.195
Dj 0,842 0 615 0.3?9 0.385
Dk o.1a4 a.522 0.265 0.186
Pa 0.840 0.813 0.431 0.312
Pb 0.?51 0,658 0,346 0.229
Pc 0.814 0,648 0,325 0-233
Pd 4,622 0,389 0,233 0-250
Pe 0.364 0,110 0,010 0-088
Pf 0,754 0,506 0,369 0.177
Pçr 0,r?3 0,599 0.571 0-593
Ph 0,866 4.528 0.292 0.220
Pi 0.802 0.?03 0.480 0.480
P) O.A12 0.602 0.535 0.375
!k 0.822 0-714 0,355 0-283
Pl 0.867 0 ,761 0 .499 0 -437

Total (5 Chars): 6,88 Avelaqe: 0-299

(b) Crisp ûaining

Table 3. Testing knowns

L Determine a descendins order for the chùâcters. This
can be done determinitrg the b€st châracters, tkee at â
time, as presented in Section 3. For each ttree characrers
ûeate the resulting rule-base Ri. For each Ri compute tlrc
totâl confidence level Ci for the Eaining set.

2. Test the training populations by computing for each
population xp its confidence ci for eâch rule base Ri.
Conpute the weighted âverage of t]rc confldence levels, X
ci*wi, where wi = Cii, Ci

3. If âny of the trâiniry populations are mis-identified in
step 2, then use the leaming plocedule âs in [1] for eâch
Ri v'here populations were mis-identified and rccompùre
Ci. (Atr alternative is to trâin an Ri whenever any
populaüon is ûris-idenüfied by ir even if none are mis-
identilied tu Step 2.)

To clarily our nethod consider the charâcte$ we have
presented. In step 0, ÿÿe sel K = 10, ând deiermine PRO,
STY, and QI,E to be the frst best set of characters and
creabe the rule-base Rl. Repeat for LON, D\.U, and
PHAS to produce R2, then for TAN ând OES for to
obtain R3. The Ci werc compubed io be Cl = 12.443, C2
= 5.650, and C3 = 1.082 for the tuzzy kaining dala and
Cl =9.567, C2 = 6.905. and C3 = 1.2-19 for ùc crisp.

In Step 2 all in the trainitrg s€rs âre correctly identified,
lhus Step 3 is Dot used in this example. The âltemative
hainirg will be considered when the unknowns are
considered. The results for the fuzzy ând crisp ûâining
sels are shown in Tâble 4.

For the fuzzy dâtâ and crisp datâ the âveüge
confidence level was higher using âll eight characters
with 3-v'ây ordedng over using the b€st five chamcters
Again, the fuzzy has a higher average confidence level
than the crisp but is lower on tle weâker populations than
the crisp.

lvhile the decoupling of the characters using 3-wây
ordering mây not âlwâys âchieve separation of the
Eaining sets, it car êlwâys be considered âs an âdjùnct to
the methods of U,21, and be used whenever the training
set is better with 3-way ordering lhân it is withoui it, and
when üe number of châracters is lârge.

6. Testing the u[kno]ÿDs.

In testing the unknoÿÿns, represented âs fuzzy dat4 the
differences between using crisp or fuzzy trâining data
le3ds lo lhe sâme conclusions as iL did wirh rhe Eaining
dâÎâ, lhat the tuzzy hâs â higher average confidence level,
but has lowe. contidence levels for the weaker
populâtiotrs. Both corre.tly idertified 13 of the 15
unknowns, though a few only mârginâlly thât hâd very
low confidence levels Trâining the individual fuzzy-
data-generated rùle-bÀses Ri in the alternative in Step 3,
did not alter these results very nuch. The Inis

(a) Fuzzy tsaining

Da 0.498 0.468 4.357 4.241
Db 0, 550 0 ,544 4.264 4.244
Dc 0.4?1 0.292 4.131 A-619
Dd 0.5r4 0,351 0-151 0.117
De 0.495 O,428 0 -276 0 ,1!6
Df 0-800 0.108 0.406 0,230
Dq 0-495 0.385 0.1?6 0,100
Dh 0-4?6 0.605 0.181 0.127
Di 0,558 A.612 4.235 0.162
Dj 0,443 4.4!t 4.257 O.246
Dk 0.597 0.519 0.280 0.159
Pa a.521 0.675 0.256 0.155
Pb 0.596 0.549 0.155 0.075
Pc 0125 0.326 0.116 0-044
Pd 0.586 0,508 0.284 0.254
Pê 0,2?0 0,313 0,201 0-1?8
Pt o.170 0.352 0_199 0_396
Pg 0-461 0.290 0.354 0.346
Ph 0-66? Q.216 A.112 A.Ot2
Pi 0.500 0.338 0.588 0.584
Pj a.412 0-174 0,306 017?
rk 0.347 0,279 0,126 0.446
Pl Q 6)2 0,543 0.242 0.238

ToEal (5 Chals): 4,892 Àveraqe: 0.213



identificâtion of Dhf, wâs likely due to the smafl size of
the ftaining datâ set. Ho\rever, for the popùlâtion
H,flatus, even when ii was added to the trai ng set was
still mis-ideDtified. In âddition, when fiÿe châraclers
werc used that weÉ best for H.flâtus, ils confidence level
was very low, ând this câme at the expense of other

(â) Fuzzy (b) crisp

Table 4. Testing kno\vl§: 3-lÿay ordering

populâtions that were then mis-identified. It should be
pointed out tlât, H.flatus, in [5] âpp€{s to be ân oùdier.

Some âdditionâl iests were condùcted. In one the 3-
way smrpins was tÂken !o be (PRO, LON, TAN), tlrc lst,
4th, and 7th characle6, (STY,DVu, OES),lhe 2nd,5th,
and 8th characbers, , and (QuE, PHAS), the 3rd ând 6th
to see if the descending ordering had âny reâl b€nefits.
hdeed it did âs in the latter câse the âverâge confialence
levels were lower and three unknowns mther lhan two
were mis-identified. In ânother test using the
multipanidon approâch of t2l, wilh K = 3 ro 8, ând 3-way
ordering, ihere were no significânt differences wirh ihe
Iesults shown âbo!e.

7. Conclusions.

We hâve examined fuzzy methods 10 creâte rule bases
ùsing small dâtâ sets to identify biologicâl populâtions
thât belong to onê of tlvo closely relâied species. Our
results show that fuzzy methods can pmduce results that
are promising, 13 of 15 unkûowns corre.dy identifi€d.
Furthermore, crisp dâta mây be sufiicient for lhe training

daia as tlrc rule-bases âre considerably snaller, with only
â snall loss in âverâge confidence levels, but havmg
higher confidence leÿek for the weaker populârions. The
l-way ordering merbod presented may help improve
conlidenc€ levels and may be useful when the châacrer
s€t is large.

Dha 0-516
Dblr 0.399
Dhc 0.503
Dhd 0,3€4
Dhe 0 .010
Dhf -0.0?0
Dhs 0.648
Dhr 0.6?8
Dhr 0.508
Dhj 0.564

H-niciôtôbus 0-478
H.bradys 0.398

H,phalerus A,219
H.flatus -0-456
H.oannus 0.039

Tôtal: 4.898
Àveiaqe: 0.327

(a)Fùzzy

Table 5. Testing unknowns: 3-\vay ordering
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Da 0.669
Db 0,474
Dc 0.510
Dd 0-0?0
De 0,264
Df 0.418
Dq 0.293
Dh 0.495
Di 0.450
Dj 0-554
Dk 0.391
Pa 0.610
Pb 0.507
Pc 0,460
Pd 0,356
Pe 0-063
Pf 0.4L2
Pg Q.525
Ph 0.394
Pi 0 564
Pj 0.445
Pk 0.539
Pl 0.616

Tôtat:10.081

0 , 472
0 ,244
0 - 4\'1
0 _276
0 .011
0,009
0.537
0.492
0.394
0.518

0,450
4.216

4.240
0.1r6
0.10?

4 .129
a.275

(b) Crisp

0.435
0 .461
4.244
4.249
0.348
o.228
0.306
0,488
0,583
0.302
0 ,150
0.536
0.397
4.299
0.494
o.296
0,3 59
0.2'12
o.206
0.288
0,152
0.196
0_440

'I .449
0.341
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