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Abstract

In this paper we examine fuzzy methods used to identify
populations from well-described closely related species.
Real nematological data is used to assess the potential
and fimitations of several methods. A method is
introduced to handle large numbers of attributes. Both
crisp and fuzzy representations of the data are
investigated.

1. Introduction

In [1] a classification method is presented using local
representation by fuzzy rules, where a data set is used for
training and learning methods are provided to adjust the
grades of certainty factors in the rules. Related results are
found in [2] using multiple partitions but not learning.
Both derive fuzzy rules using crisp data for the training
set. Other methods using distance metrics may be found
in [3.4].

In this paper we investigate the case where the data sets
arc treated as fuzzy values. The methods of [1,2] seem
more natural to explore given the nature of our data. In
particular, in descriptions of nematode species, il is most
common to have a mean and range given for each
measurement; less often a mean and standard deviation
are given. Each mean and range is derived from a sample
of ten to twenty specimens from a single population. This
specimen data is usually nol published due to volume of
data. Consequenlly, for a well-described species, means
and ranges for a dozen or so populations are published.
For a classification problem this size (raining data set
would be considered rather small. (Note that this would
be called an identification problem in biology since the
purpese is to use known classes, the training data, to
develop rules that can then be used 1o assign unknowns,
to one of the classes.)

For 1wo closely relaled, well described species,
distinpuishing between unknowns can be very difficult
and may uvltimately rely on quantitative data, typically
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measurements. In [5], Fortuner studied two such species,
Helicotylenchus dihystera, H.d., and Helicotylenchus
pseudorobustus, H.p., using descriminant functional
analysis, DFA. However, this method is more data
intensive since it relies on data for individual specimen,
which as mentioned is not generally available in the
literature. Similarity methods have also been used, which
are less data intensive as only means are required, [6], bul
they have the drawback of nol assigning an unknown to a
known class.

Our objective here is to investigate the feasibility of
using the fuzzy rule-based methods of [1] for
classification of well described species using the limited
available data consisting of means and ranges, In doing
this we present an algorithm that can extend the methods
of [1], and [2], to identify unknowns in some cases when
the number of attributes is large.

2. Fuzzy representation and rules.

We will use the data of from (5] for 11 populations of
H.d. , denoted Da, ..., Dk, and 11 populations of H.p.,
denoted, Pa, ..., P] for the training data. except for Pe,
which has been reclassified as H.d. For the unknowns,
we will use the 10 populations of H.d., denoted Dha, ...,
Dhj, and 5 other populations H.flatus, H.nannus,
H.microlobus, H.bradys, and H.phalerus. The first two
are syronymous with H.d. and the lasi, three with H. p.

We do not use artificially-generated data to test our
methods, Therefore, the conclusions we draw are based
on real data and this gives a good perspective on the
possibilities and limitations of the methods.

Measurements for eight characters (attribules) are
considered for each of the populations. They are: the
lenpth of the body, LON; the length of the oesophagus,
OES; the length of the stylet, STY; the position of the
phasmides, PHAS; the length of the process terminal,
PRO; the length of the tail, QUE, the diameter of the
body, DVU; and the number of tail annuli, TAN. The
data for the first seven of these can be found in [5], pp.
194-222; that for PRO is unpublished. The domains for
each character are shown in Table 1.



Index Charackter Domain
1. LON 500 - 900
2. OES 90 - 150
3. STY 22 - 30
4. PHAS 15 = 3¢
5. PRO 0 - 5
6. QUE 9 = 27
7. Dvu 17 - 38
8. TAN 4 17

Table 1. Characters and domains

For a given population and each character the mean, x ,
and the range will be represented by a triangular
membership function, with the vertex at the mean, with
membership value 1.0, and range for its support. An

example is shown in Figure 1(a) where x = 24.88, with
range 23.5 - 26.5 for the character STY. Later we will
briefly mention the effects of using trapezoidal funclions
to represent the fuzzy data,

As in {1], each domain will be partitioned into K-1
equal iniervals Lo create K membership functions
representing a fuzzy grid for the domain. Each boundary
point of each interval will serve as the vertex of a
triangular membership function with support between its
neighboring boundary points, excepl for the membership
functions at the ends. Clearly the scales are not the same
on each axis, but as in [1], the size of the grid, i.e., K, for
each axis will be the same. A member of the grid is

denoted A;(i where j is the index of the character, which

for our application will be the index shown in Table 1,

and i is the ith member of the grid. An example for K =5
and the domain of the character LON is shown in Figure
1(b).

The membership function for AIj{i will be designated
"llj{i . If x is a crisp scalar then its value for the grid
function AIJFi is given by the membership function

!'Lljci (x). When x is a fuzzy data point, the value is
K K
(1) aj i(x) = max {{; i((Y)' x(y)).
¥ J

This is simply the greatest common value for x and AIj{i
[7]. For example, in Figure 2(a) the (hird grid function
for the character LON, which has index 1, and K =5, is

Af 3 evaluated at the (crisp) scalar x =675.5 1o yield

Fozzy data

{b) A fuzzy grid for LON

Figure 1. Fuzzy functions.
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Figure 2. Evaluating crisp and fuzzy data



p.f 3(6’}'5.5) =0,755. When x is a fuzzy scalar given by
the mean, 675.5, and range, 584.0 - 737.0, shown alsc in
Figure 2(a), a"lS 3(x) = 0.844

When xp = (X1, ..., Xp) 15 @ multidimensional data
point, where each component xj is a fozzy scalar
. . K .
representing a mean and range for character j, and A’ is

I
]

the i th grid function for the j character, j =1, ..., n, we

]
designate the product operator
@ I 2~ )
j JL

]
where xj(y) is used in (1) in place of x(y). Instead of
using all of the characters given in Table 1 will often use
just a subset of these characters to form our rules. For
those characters not selected, their factors will not appear
in (2). For example, if we select just two characiers,
LON, index 1, and STY, index 3, then using the fuzzy
data for LON and the grid function from Figure 2(a),

represented by x| and A;j 3 and if the data for STY is
given by x3 with mean 24.88 and range 23.50 - 2650,
and taking the grid function Ag 9 shown in Figure 2(b),

then the value of (2) will be 0.848 * 0,740 = 0.628.
Continuing this example, a rule using just these two
characters and the given grid functions in Figure 2 would
have the form:

5 5
If x1is Ay 5 andx3 jsAg

then xp belongs to H.d. with CF=0.463.

CF is the certainty factor of the rule, which indicates the
strength of the conclusion that xp is in the class H.d. (x]
and x3 are the component values of xp.) The degree that
the data point Xp satisfies this rule is the product of (2)
and the CF, i.e., 0.628 * 0.463 = (1291.

The creation of a rule for a subset of characters consists
of taking a grid function from each domain for these
characters and then determining the class, H.d. or H.p.,
and the CF. To do this, each data point in the training set
that belongs to H.d. is selected to compute (2). These
results are summed to form B1. This is repeated for
points in H.p. to produce 2. If 1 > P2, then the class
in the rule is set to be H.d_; if B2 > f1, the classis set
lobe Hp.; and if Bl = B2, then no class is specified by
the rule. The CF for the rule is

3 1B1 - B21/1B1 + P21l

In {1,2] once a rule-base is constructed, an unknown
data point xp can be identified in the following way: For
each rule in the rule-base, compute (2) for xp and
multiply by the CF for the rule. Take the maximum value
m1 for rules where the class is H.d., and the maximum
m2 for riles where the class is H.p., and if the m1 > m2
the unknown is determined to belong to H.d., otherwise it
is determined 1o belong to H.p., except in ties where the
class is not determined. The confidence level is Iml -
m2l. Unless stated otherwise, when we construct a
rule base the same subset of characters are used for each
rule in the rule-base. When a subset of characters is used,
the interpretation of class membership is relative to the
characters used

3. 3-way ordering of characters.

For eight characters, even a grid with K = 5 would be

far too big since it would potentially generate 58 =
390,625 rules. As an alternative we start by ordering the
characters by measuring their efficacy in identifying the
training set after training is completed.

Using only one character at a time for the training set,
without learning [1], and K large since only one character
is involved, each character is assessed. The resulis are
shown in Table 2(a). There the number of incorrectly
identified training patlerns is given, and the total
confidence level is computed summing each correctly
identified training point minus the confidence level for
each improperly identified point. This is then repeaied
for two characters at a time, using the best two characters,
PRO and STY, in combination with each of the next two
best, QUE and LON, with the resnits shown in Table
2(b). Since two groups (PRO,QUE) and (PRO,STY) in
Table 2(b) have the lowest score in terms of the number
incomrectly identified training points, i.e., all are correctly
identified, and since there is a common character, PRO,
we take (PRO, STY, QUE) to be the best three-character
combination. This combination could also be viewed as
having incorrectly identified 3 since it can be obtained via
the second and last entries in Table 2(b). One could
therefore argue in favor of other heuristics such as the
highest total score, which would give (PRO, STY, LON),
or esting for the best triple among the best two.

This can be repeated with all remaining characters, (o
get the next best three-character set. For our set, the next
best was (LON, DVU, PHAS), with the last set (OES,
TAN). We will refer (o this as 3-way ordering of the
characters. If four characters remain at the end, they can
be decomposed into two sets of two characters. Based on
this heuristic the characters were given the descending
order PRO, STY, QUE, LON, DVU, PHAS, TAN, and
OES.



4. Fuzzy vs. crisp training data.

In additicn to examining the feasibility of using fuzzy
data to distinguish closely related species, we also
examine whether there is any advantage in using fuzzy
dala instead of crisp data for the training sets. In what
follows fuzzy data will always be used for testing
unknowns as it is generally better and more reliable to test
a sample of a dozen specimen from an unknown rather
than a single specimen. When testing the training dala we
shall use fuzzy data for testing when fuzzy data is used
for training and crisp for testing when crisp data is used
for training. The assumption in the latter case being that
only crisp data is available.

# Incorreckt Total
LON 6 5.1
OES 10 1.1
STY 2 11.7
PHAS 8 2.0
PRO 2 13.1
QUE 4 4.8
Dva 7 2.4
TAN 9 0.3
{a} K = 20
FRO, LON 1 14.1
PRC, QURE 0 12.9
PRO, STY 0 16.5
STY, LON 3 11.7
STY, QUE 3 11.9
{h) K = 20

Table 2. Ranking the characters

Using jusi 23 crisp data points (means only for
our 23 training populations Da - P1) for each character it
would appear to be too little data resulting in too few
rules for the corresponding fuzzy subspaces. On the other
hand, using fuzzy data might implicitly expand the data
set resulting in fewer missing rules for the fuzzy
subspaces.

Indeed, when the best five characters (1,3,5,6,7 in
Table 1} with K = 5 were used the crisp data set
produced 259 rules, which is one tenth the size of the rule
base, 2,287 rules, using the fuzzy data. In both cases,
rules with CF's less than 0.1 were eliminated and not
counted. Somewhat unexpectedly the majority of rules in
each case, 220 for the crisp training data, and 1,457 for
the fuzzy training data, had CF's = 1.0. This is due (o the
fact that (3) will always produce the value 1.0 whenever
one of the B's is zero, even if the other one is very small.
Clearly then from the point of view of the rule base size,
the crisp approach is preferred, and from the

completeness of the rule base, the fuzzy approach would
seem better. While we didn't lest this here, one would
expect that the forgetting algorithm of [1] could be used
Lo reduce the number of rules.

The best five characters were also used for comparing
cnsp and fuzzy daia for training, since using all eight
characters presents problems with the rule-base size.
Four rule bases each for the fuzzy data and the crisp data
were created. One of the rule bases was created using the
best Lwo characters, PRO and STY, one using the best
three characters, one the best four, and one the best five.
The values of K were 20, 10, 5, and 5, respectively, with
K decreasing as necessitated by the combinatorics. Table
3(a) shows the resulls of testing the training populations
where the training and testing dala are fuzzy. For
example, for the first column the confidence level is
shown for each population where the best 2 characlers,
PRO and STY were used to create the rule-base with K =
20.

Noteworthy is that the confidence levels for each
population tends to decrease considerably as the number
of characters increases from two (o five. This is due in
parl to the coarser grid as K necessarily decreases, in part
to the additional number of factors in computing (2}, and
in part Lo the descending order of the characters. The
same holds true for crisp data as seen in Table 3(b).

While the fuzzy data has some of the highest
confidence levels and the highest average, it also has the
lowest confidence levels in comparison to crisp data. One
population mis-identified. No training, [1], was osed to
compare fuzzy and crisp data. Using trapezoidal
functions to represent the training dala tends to further
increase the confidence levels of the stronger populations
and decrease those of the weaker ones.

5. The 3-way ordering algorithm.

In order to handle eight characters we present a method
based on the descending order of characters using the best
characters' confidence levels to offset those for characters
where they are lower. In addition, grid sizes do not need
to be reduced as (he number of characters increases, as
one could argue (hat a finer grid is also necessary for the
more difficult characters.

As supgested by these considerations we propose the
following algorithm as a means to boost the confidence
levels of the training sel and to handle larger sets of
characters:

The 3-way ordering algorithm;

0. Set a value of K for the partition as in the adaptive
method [1]. The value of K should be selected to create
as fine a partition as desired without creating an
excessively large nule base assuming that three characters
will be used at a time.



#chars 2

K 20

Da 0.846 0.
Db 0.832 0
Dc 0.802 ¢
Dd 0.188 0
De 0.507 0
Df 0.828 0.
Dg g.532 0
Dh 0.527 0
Di 0.607 0O
Dj 0.842 0O
Dk 0.784 0
Pa 0.840 Q.
Pb 0.751 0
Pc 0.814 0O
rd 0.622 0
Pe 0.364 0
Pt 0.764 0
Pg 0.773 0
Ph 0.866 O
Pi 0.802 0O
Py 0.872 0
Pk 0.822 0.
Pl 0.867 0

Total (5 Chars}

Da 0.498 0O
Db 0.550 0
D¢ 0.471 0
DA 0.574 0
De 0.495 0O
Df 0.800 0O
Dg 0.495 0
Ch 0.476 0
Di 0.558 0
Dj 0.443 0
ok 0.537 0
Pa 0.527 0
Fb 0.596 O
Pc 0.325 0
pd 0.586 0
Pe 0.270 0
PE 0.770 0
Pg 0.461 0
Ph 0.667 0
Pi 0.500 O
Pj 6.412 0O
Pk 0.347 0
Pl 0.632 0

Total (5 Chars):

3
15
770 Q.
.704 0
596 0.
.103 -0,
.330 0.
483 0.
372 0.
.519 0
.324 0.
615 0.
.522 0.
813 0.
.658 0.
.648 0.
L3890,
1160 0.
.806 0.
.5%9 0.
.528 0.
703 0.
.602 Q.
714 Q.
767 0.
: 6.88

468 0.
.544 0.
.292 0.
.351 O.
L4288 0.
L3008 0.
.385 0.
.605 0.
672 0.
-411 0.
.539 0.
675 0.
.94% 0.
326 0.
.508 0.
313 0.
.352 0.
.250 0.
.21 0.
.338 0.
174 0.
279 0,
.543 0.

4.892

4 5
10 5
538 0.429
.433 0.378
694 0.621
037 -0.050
140 0.107
503 0.398
137 0.096
306 0.23B
255 0.185
379 0.385
266 0.186
433 0.332
346 0.229
325 0.233
233 0.250
010 0.088
369 0.377
571 0.593
292 0.220
480 0.480
535 0.375
355 0.283
498 0.437

Average: 0.299

(a) Fuzzy training

357 0.203
264 0.204
731 0.619
151 ¢.117%
216 0.116
406 0.230
176 0.100
181 0.127
235 0.1s2
257 0.206
280 0.158
256 0.155
155 0.075%
136 0.084
284 0.258
201 0.178
389 0.396
354 0.346
112 0.072
588 0.584
308 0.177
126 ©¢.0Be
282 0.238

Average:

(b) Crisp training

0.213

Table 3. Testing knowns

1. Determine a descending order for the characters. This
can be done determining the best characters, three at a
lime, as presented in Section 3. For each three characters
create the resulting rule-base Rj. For each Rj compute the
total confidence level C; for the training set.

2. Test the training populations by cornputing for each
population xp its confidence c; for each rule-base R;
Compute the weighied average of the confidence levels,
cj#wj where wi = G2 G

3. If any of the training populations are mis-identified in
step 2, then use the learning procedure as in [1] for each
R where populations were mis-identified and recompute
Ci. (An alternative is to train an Rj whenever any
population is mis-identified by it even if none are mis-
identified in Step 2.)

To clarify our method consider the characters we have
presented. In step 0, we set K = 10, and determine PRO,
STY, and QUE (o be the first best set of characters and
create the rule-base Rjy. Repeal for LON, DVU, and
PHAS to produce Ry then for TAN and OES for to
cbtain R3. The C; were computed to be C1 =12.443, C,
= 5.650, and Cq = 1.082 for the fuzzy training data and
C1 =9.567, C=6.905, and C3 = 3.239 for the crisp.

In Step 2 all in the training sets are correctly identified,
thus Step 3 is not used in this example. The allernative
iraining will be considered when the unknowns are
considered. The results for the fuzzy and crisp training
sels are shown in Table 4.

For the fuzzy dala and crisp data the average
confidence level was higher using all eight characters
with 3-way ordering over using the best five characters.
Again, the fuzzy has a higher average confidence level
than the crisp but is lower on the weaker populations than
the crisp.

While the decoupling of the characters using 3-way
ordering may not always achieve separation of the
training sels, it can always be considered as an adjunct to
the methods of [1,2], and be used whenever the training
set is better with 3-way ordering than it is without it, and
when the number of characters is large.

6. Testing the unknowns.

In testing the unknowns, represented as fuzzy data, the
differences between using crisp or fuzzy training data
leads to the same conclusions as it did with the training
data, that the fuzzy has a hipher average confidence level,
but has lower conlidence levels for the weaker
populations. Both correctly identified 13 of the 15
unknowns, though a few only marginally that had very
low confidence levels. Training the individual fuzzy-
data-generated rule-bases Rj in the alternative in Step 3,
did not alter these resulls very much. The mis-



identification of Dhf, was likely due to the small size of
the training data set. However, for the population
H.flatus, even when it was added to the training set was
still mis-identified. In addition, when five characters
were used that were best for H.flatus, its confidence level
was very low, and this came at the expense of other

Da 0.669 0.435
Db 0.474 0.461
Dc 0.510 0.204
DA 0.070 0.209
De 0.264 .348
Df 0.418 0.228
Dg 0.293 0.306
Dh 0.495 0,488
Di 0.450 0.583
Dj 0.554 0.302
Dk 0.391 0,350
Pa 0.630 0.536
Pbh 0.507 0.397
Pc ¢.460 0.298
pd 0.3586 0.494
Pe 0D.063 0.296
Pf 0.412 0.359
Pg 0.525 0.272
Ph 0.394 0.206
Pi 0.564 0.288
Pj 0.445 0.152
Pk 0.539 0.196
Pl 0.616 0.440
Total:10.081 7.849
Ave.: 0.438 0.341
(a) Puzzy (b) Crisp

Table 4. Testing knowns: 3-way ordering

populations that were then mis-identified. It should be
pointed out that, H.flatus, in [5] appears to be an outlier.

Some additional tests were conducted. In one the 3-
way grouping was taken to be (PRO, LON, TAN), the 1st,
4th, and 7th characters, (STY,DVU, OES), the 2nd, 5th,
and Bth characters, , and (QUE, PHAS), the 3rd and 6th
to see if the descending ordering had any real benefits.
Indeed it did as in the latter case the average confidence
levels were lower and three unknowns rather than two
were mis-idenlified. In another tesi using Lhe
multipartition approach of [2], with K = 3 to 8, and 3-way
ordering, there were no significant differences with the
results shown above.

7. Conclusions.

We have examined fuzzy methods 10 create rule-bases
using small data sets (o identify biological populations
that belong to one of two closely related species. Our
resulis show that fuzzy metheds can produce results that
are promising, 13 of 15 unknowns correctly identified.
Furthermore, crisp data may be sufficient for the training

data as the rule-bases are considerably smaller, with only
a small loss in average confidence levels, but having
higher confidence levels for the weaker populations. The
3-way ordering method presenied may help improve
confidence levels and may be useful when the character
sel is large.

Dha 0.536 0.412
Dhb 0.388 0.244
Dhe 0.503 0.417
Dhd 0.3684 0.216
Dhe 0.010 0.011
Dhf -0.070 -0.009
Dhg 0.648 0.537
Dhh 0.678 0.492
Dhi 0.508 0.394
Dhj 0.564 0.518
H.microlobus 0.478 0.450
H.bradys 0.398 0.276
H.phalerus C.279 0.240
H.flaktus -0.456 -0.176
H.nannus 0.039 0.107
Total: 4.898 4.129
Average: 0.327 0.275
(a) Fuzzy {b} Crisp

Table 5. Testing unknowns: 3-way ordering
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