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Abstract

This paper presenss a fuzzy classifier that generates
fuzzy if-then rules from numerical datw for mulni-
dimensional classification problems uting genetic
algorithms with refection of low confidence patterns.

1. Introduction

Ishibuchi and his colleagues have described various
fuzzy classifiers for crisp numerical training data for
pattern classification problems; see for example [1,2,3].
When the problem exceeds more than a handful of
nttribules, they wse genetic based algorithms [3] 1o s=arch
the Jarge space of furzy roles to produce small rule sets
with very high classification rales. Rejection options are
oot considered, However, if training dats with low
conflidence levels are rejecied, then their genetic based
method may resalt in a significant percentage of rejects.
In this paper we modify the methods in {3] 10 reduce the
number of rejects without artificiaily inflating the
confidence levels of boundary data. ,

For two closely related, well described species of
nematodes, Le,, microscopic round worms, distinguishing
between unknowns can be very difficult and may
altimately rely on quantitative data, typlcally
measurements. In (4], Formner studied two soch species,
Helicotylenchus dihystera, H.d., and Helicotylenchus
peeadorobusiug, Hp, We will use the data from [4] for 23
populations of Hd, snd 15 populations of A.p. for our
training data, Measorements Tor eight characters
(attributes) are considered for cach population: LON, the
length of the body; OES, the length of the oesophagus;
STY, the length of the stylet; PHAS, the position of the
phasmides; FRO, the length of the process terminal; QUE,
the Jength of the wil; DV, the dismeter of the body;
TAN, the number of tail annuli. The data for the frst
seven of these can be found in [4], pp. 194-222; that for
PRO is unpublished. For each of these nematode
populations and each attribute, the mean and the range
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valees are available. When we train with crisp data, the
mean ilone is used and when we train with fuzzy dota, the
valie is regresented by o triengolar membership function,
with the verlex at the mean, with membership value 1.0,
and the rangs for it5 supporl.  As in (5], we will also
compare using crisp and fuzzy data for training.

2. Background

This paper extends the methods of [3] by incorporating
concepts from [5]. We simplify the exposition by
assuming & 2-class problem, with classes Cl-1 and CJ-32,
and n attribules for cach training point (patiern), In this
section we present the methods of [3] simplified to the 2-
ciass problem. The end of each procedure will be marked
by a3, TP will denote o collection of m training patierms
Xp = (Apls - %pn). where, for this section, Apl is the
{erisp) value of itz i'h atribute. Esch domain is
normalized ard uniformly partitioned to create K
membership functions representing a fuzzy grid for the
domain. Using K = 1, ..., 6 gives a total of 21 grid
functions as seen in Fig. 1; let G denote this collection.

k=1 k=2 k=3
DX DX XY
[1}

k=4 kw5 k=6

Figure 1. The collection G.

In our tests we excluded the k = 1 grid function from G.
A member of the grid is denoted Aj§ where §is the index
of the atribute, and Wji i 18 membership function. We
assume rules of the form:
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RuleRj: If xp1is Aj) and ... and Xpnis Ajp
then classify Xp as Class Cj with CF =CF

where Aji £ G, C;j is the consequent class, and CF;j is the
grade of certainty.

Initial Rule Generation. With large n, even n = 8, it is
impractical to generate all possible rules. Therefore, some
small subset must be selected, typically 100 or fewer [3].

PROCEDURE IRG:
Step 1. Specify Npgp, the rulebase size

Step 2. Create the antecedents for rule R;,
J =1, ., Npop, by randomly selecting Aji’s from G.

Step 3. Complete the generation of each rule Rj,
i=l .., Npop- using Proc. RG (presented next.) 1

Rule Generation. A fuzzy rule Rj with antecedents Aji
can be generated by the next method that computes the
consequent, Cj, of the rule and its certainty factor, CFj.
PROCEDURE RG:

Step 1. Calculate for each class Cl-i,i= [, 2

Bi = =
Xp eCl-i

Uj(xp)
where the compatibility prade is

Ujixp) = I-‘-jl(xpl)‘\ "lljn(xpn)-
Step 2.. The max {B], $2} determines the class Cjof
rule Rj according to the largest B if the By's are unequal,
otherwise the class is undelermined.

Step 3. If a class is determined in Step 2, then set
CFj =|BL - B2[/[B1 + B2 %

Fuzzy Reasoning. This describes how the class of a
pittern xp ¢an be determined if its class is unknown, or

for classifying a training pattern by assuming its class is
uninown. Assume that 5 is a g2t of fuzzy if-then rules.

PROCEDURE FR:
Step 1. Foran Xp, calculate foreachi=1,2
@j= max (Uj(xp)CFj |Cj=Cl-i and Rj €S }
J

Step 2. ap=max{a] o2} determines of class of Xp to
be CHi if ap =aj and &) # 03, Otherwise, the class is
not determined,

In [3], where genetic methods are used, a confidence
level is not computed as it is in [1,2] or in [6} where it is
used as a reject option. The next method computes
confidence levels after Steps 1 & 2 in Proc. FR.

PROCEDURE FRC:
Steps | & 2 as in Proc. FR

Step 3. If a class is determined in Step 2, compute the
confidence level Gp= ap - minf{a] ap}. ¥

Learning Algorithm. For the current population of rules,
learning can be done by rewarding rules when they
correctly identify a pattern and punishing them when they
don't.

PROCEDURE LA:
For a current population of rules S repeat Neam times:
Forp=1ltom
Step 1. Take xp in TP and determine the rule Rjin§
that yields the value for op in Proc. FR (or Proc. FRC).

Step 2. If xp is correctly identified, increase CFj
CFj = CFj + n1(1- CFj).
otherwise decrease it
CF = CF; - m2 CFj,
where 111 and 1) are positive-valued leaming rates. §

Genetic Changes, In order 1o obtuin the next generation
of rufes from the current population S using genetic
methods, = fitness measure 1s needed.  For each rule Rj in
5, its fitness is defined by [3]

fitness®;) = wNCP-NCP(R;)) - wNMp-NPM(R;),
where NCP(Rj) is the number of points correctly
classified by Rj. NPM(Rj) the number incorrectly

classified, and wncp and wnMp are positive weights. Let
fimessmin(S) be the smallest fitness value for all rles.

PROCEDURE GC:
Step 1. Compute the fitness of each rule in S.
Step 2. Compute selection probabilities for each rule Rj

fitness(R;) - _fitnessmin(S)
Z {fitness(Ry) - fimessm;in(S)}

where the sum is over all rules in S.

Step 3. Select §- Prep rules, collected in pairs,
according to the probabilities P(Rj), where Prcp is the
proportion of rules to be replaced. .
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Step 4. Replace the S - Prcp rules with the lowest
fitness valves by the pairs from Step 3 that are first
modified by crossover and mutation. In crossover,
antecedents of the rules in each pair are swapped using a
uniform probability. In mutation, according to a
mutation rate, antecedents are randomly replaced by
grid functions randomly selected from G. The
consequent class C; and the certainty factor CFj of the
replacement rules are computed as in Proc. RG. t

Genetic Training, The methods presented above are used
to construct the main training method of [3], which is:

PROCEDURE Gen-1:

Step L.
Step 2.
Step 3.

Proc. IRG "Initialize the rulebase S"
Proc. LA "Perform learning"
Proc. FR on all patierns in TP to obtain

Tot = number correctly classified.
Proc. GC "Modify S for next generation”
Until Ngep, generations are done, go to Step 2.
Output S with highest Tot.

Step 4.
Step 5.

Step 6.

Instead of using Proc. Gen-1 to compare with our
methods, we will use a slight modification. We wish not
only to maximize the total correctly identified but also the
total confidence 1ével. The confidence levels ap convey
for each pattern-the degree to which the system can
confirm a classification. They can also be uvsed for
rejecting patterns with low confidence values [6].
Consequently, we replace Tot in Proc. Gen-1 by

Tote =Tot+ Zgp,

: p
where Sp=0p if Xp is correctly identified, and Op=-0p
if it is not. We could compute Tot; by omitting rather
than subtracting confidence levels of incorrectly identified

patterns. Qur test results would not be significantly
different.

PROCEDURE Gen-2:

In Proc. Gen-1 use Proc. FRC instead of Proc. FR in
Step 3. Use Totc in place of Tot. }

3. Main Methods

In this section we propose modifications to the methods
in Section 2. This will be based on the 3-way ordering
method in [5]. We propose two essential changes to Proc.
Gen-2: first, Proc. IRG is modified to produce an initial
set of rules up to half of which are generated using 3-way
ordering, with the remainder randomly generated; second,
the compatibility grade Uj(xp) used in Proc. RG and Proc.
FRC is modified.

To use 3-way ordering, the attributes must be ordered
and grouped three at a time, except for possibly the last
group or two, which occcurs when n is not a multiple of 3.
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Various heunistics can be employed for this, but the basic
idea is to find the "best” three atiributes using the training
set TP, then the next best group of three and so on. For
example, for the nematode data the best group of three
attributes is: (PRO, STY, QUE); the next best group is
(LON, DVU, PHAS); the last group is (TAN, QES). In
our example, three rulebases RB1, RB2, and RB3 are then
constructed using just the attributes in each group. Using
only the grid for K = 6, each rulebase can contain at most
63 = 216 rules, so all rules can be generated. Rules with
very low CF's can be deleted. With this in mind we
present our modifications to Proc. Gen-2. The first
method will use 3-way ordering to generate the initial S.

PROCEDURE IRG-3-way:

Step 1. Determine a descending order for the attributes
prouped three at a time as in [5] and form domresponding
rulebases RBj, ..., RBr using the largest grid size, K = 6.

Step 2. For each rulebase RB; compute the total
confidence levels Cf; = £ op  over TPand
p

set wj =Cf;j / ZCfj.

(Note that only the attributes in the group are used to
compute the compatibility grade used for Op-)

Step 3. Test the training patterns TP by computing for
each xp its confidence op; for each rulebase RBj. Store
the rule Rpj from RBj that produces opi- Compute the

weighted confidence wop= E gpi -wj for Xp.
i

Step 4. For each xp, form a rule Rp consisting of the
antecedents of the Rp; 's obtained in Step 3. Rank the Ry
based on the value of wep in Step 3. -

Step 5. Take the min { | TP |, Npgp/2 } best rules
(ranked in Step 4) to produce up to half of the rules for
the initial 8. | TP | is the size of TP. The remaining
rules are obtained with antecedents selected randomly,
as in Proc. IRG, to complete S.

Step 6. Complete the generation of each rule Rj, j =1,
Npop. using Proc. RG-3-way (presented next.)

PROCEDURE RG-3-way:

The same as Proc. RG except for the compatibility grade
Uj(xp) we use

Ujixp) = w1 4j1(xpD)" Kj2(xp2)- 1j3(xp3)
+ w2 ja(xpd) Bj5(xps) Bje(xpe)

+ i



where w; are the weights computed in Step 2 of Proc.

IRG-3-way. We assume that the attributes have been
ordered and grouped.

PROCEDURE FRC-3-way:

The steps are the same as Proc.

FRC except for using
the compatibility grade Uj(xp) fro

m Proc. RG-3-way. $

With these modifications, we can state our main training
method. Except for the initinl ruls generation and the
computation of the compatibility grades, Proc. Gen-2 and
Proc. Gen-3-way are the same

PROCEDURE Gen-3-way: -

Proc. IRG-3-way  “Initialize the rulebase S"
froc. LA "Perform learning”
Proc. FRC-3-way on all points in TP to

aibtain Tot.
Proc. GC "Modify S for next generation”
Until Ngen generations are done, go to Step 2.
Output S with highest Tot; }

Step 1.
Step 2.
Step 3.

Step 4.
Step 5.
Step 6.

4, Some variations

In this section we offer some variations on the methods
described in Sections 2 and 3.

Compatibility grades. The first variation modifies the
compatihility grads Uj{x } used in Oea-2 to reduce the
effect of the number urm:tm's when the number of
ettribotes is not small. The first veriarion is

PROCEDURE Gen-h/n:

Use (U § (xp))hm, where n is the number of attributes,
1 <h <n, instead of Uj(xp) in Proc. Gen-2. §

ITh = n, there i5 no change; if b = 1, then it is the
Etometric mean, In our tests we will use he3landne4§,
The reason is that the 3-way calculstion of the
compatibility grade hos three membership factors fior each
group of atiributes.  Using Gen-3/8 will Eive some
ndication of the effects of changing the compatibility
Erades on the number of rejected patterns,

Rule reduction. In [3] it was shown that when Non was
between 70 and 100 almost all of the patterns in T['Pwm
correctly classified by approximately 20 if-then roles,
where [TP | = 150 in three classes. We tested rule
reduction in the methods presented by eliminating 2 rules
from the current § for the next generation each time Ttz
Shieaded the previous high. Rule reduction ceased wheg
30 rules was reached. The remaining gererations were
tien computed. Tn ur tests, 50 rulés was reached when

approximately half of the

generations were computed.
Use of rule reduction is indi

cated by 10050 in the resulis.

Fuzzy training patterns. All of the methods pressnied
use crisp daia. However, if iz BASY to accommodite Xl
when it i3 & fuzzy number, .., Kpjly} is & membership
fumcthon. Instead of Hjilxpi) in the compatibility prade we
e max {min{pRy) , xgi () Our results will indicate
when crisp duta {5 used and when furzy data i5 used.

5. Results

The results for the meshods presented are given in Table
I for the 38 patterns in the two classes, Hd. and Hp,
Npop was always 100 rules, excepd when rule reduction
was performed,  The other parameters used are Eiven ui
the end of this section. Each method, Column 1, was run
20 times with the averages given in the table. Both crisp
and fozzy dats were used as indicated in Column 2.
Calumn 3 gives the average Tote. Since all 38 patterns
were comectly identified in each mun, the average
confidence is simply (Toty - 38138 as shown in
parentheses in Column 3. Clearly the Proc. Gen-3-way
methiod gave much higher average confidence levels than
Proc. Gen-2, and somewhat higher than Proc. Gen-VE,

We set the rejection level at 0.1, Any pattern whoge
confidence level fell below this was rejectad, Column 4
shows the average number of rejected points for the 20
runs and the percontage reduction for the listed methad
over Proc. Gen-2 for crisp and fuzzy data, It shows
significant improvements using Proc. Gen-3-way.

Using reject options in genetic methods ralses an
intesesting question. In [3], where reject oplions were not
considered, the average percentage correctly identified
wis very high, essentially 100% when 70 or more rules
were used. The same occurs with our duta if rejection is

. mot considered. 'When reject options are inclnded, the
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number of rejects can vary widely from one ran to the
next; see Column 5. In his case one measure of the
quality of a method is the number of times there are no
rﬁmmtﬂmzﬂmﬂuminﬂnlmm& This gives
n expectation of the number of ning pecded i abtain no
rejects. The J-way methods had far more instances of no
rejects than the other methods,

The last column, Column 7, gives & measure of the
average consistency of each method, The confidence level
of & point over the 20 runs can change significantly
because of the randomness that is inherent in the genetic
methods. As Column 7 shows, the 3-way methods ere
more consisient (lower values) than the other methods,
while at the sume time having fow oumbers of rejects.
Thummim:m:yﬁnpmmm'ard:nmmmismmad
&5 the standard deviation divided by the average
confidence. The values shown in Column 7 are the

averages over all paints.
problems with Proc, Gen-3-way.

ure [wo potental
First, the 3-way initiafization of the rules could predispoge



]

the method into finding the same local maximum. We do
not believe this occurred in our tests as seen in the range
of the number rejected; see Column 5. Also, the random
generation of hall or mose of the mules in Gen-3-way helps
guard against this, Second, there is o possibility that the
Gen-3-way compatibility grade computation artificiully
inflates the confidence level of the patterns. This eriticism
can be leveled at the Gen-3/8 method as well. However,
we observed in many runs, that points that are difficult to
trtin in the Gen-2 method, often had the same very low
confidence levels for Gen-3-way and Gen-3/8, excluding
of ¢ourse the runs where there were no rejects. Note that
even Gen-2 produced a run with no rejects, so that the low
compatibility grades caused by a large number of factors
does not preclude training without rejects.

The improvement of Gen-3-way over Gen-3/8 gives
some indication of how much this is due to the initial
generation of the rules in Gen-3-way. The improvement
of Gen-3/8 over Gen-2 gives an indication of how much a
change in the compatibility grade formula contributes.

It is not clear that using fuzzy data for training in the
genetic methods is an improvement over using crisp data,
With the non-genetic 3-way method in [5], the rulebases
constructed from fuzzy data provided mure coverage of
the space than the ones constructed wsing crisp training
data and the average confidente levels were highes. In
Gen-3-way the number of rules is constant for fuzzy and
crisp, and the average confidence levels are not higher for

Finally, we note that the extra ime needed 1o initialize S
in Gen-3-way over Gen-2 is insignificant compared to the
cost of producing 100 generations in each run. An
improvement in time, approximately a 40% reduction, was
observed in reducing incrementally the number of rules to
50 as described in Section 4. Somewhat unexpectedly,
this led to even better results as seen in the last row of

Table 1, which may have been due to the randomness of
the rule inilializations.

As in [3], the parameters used in these tests are:
Npop = 100, rulebase size
Prep = 0.20, rule replacement rate
11=0.001, n2 = 0.1, learning rates)
Nlearn = 20, number of leaming iterations/generation

rejection level: Q.1 mutation probability: 0.1

wNep =1 WNMP = 5, rule fitness weights

Ngen = 100, number of rulebase gencrations/run
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PROCEDURE- Data type Average Average Range No rejects Average
Totg # rejected # rejected #of times  consistency
Gen-2 Crisp 473 (024)F 2.90 0-7 1 . 0.388
Gen-2 Fuzzy 48.0 (0.26) 6.10 2-10 0 0.379
Gen-3/8 Crisp 549 (0.44) 135 (53%)* 0-3 1 0.264
Gen-3/8 Fuzzy 526 (0.38) 3.55 (42%) 2-7 (] 0.315
Gen-3/8 100450  Crisp 53.6 (0.41) 250 (14%) 1-6 0 0.296
Gen-3-way Crisp 55.8 (047) 1.05 (64%) 0-3 4 0.218
Gen-3-way Fuzzy 543 (043) 175 (71%) 1-3 0 0.215
Gen-3-way 10050 Crnisp 554 {0.46) 0.80 (72%) 0-2 6 0218

t average confidence level in parentheses.
* percentage reduction in Avergge # rejected for this method over Gen-2 for the same type of data.

Table 1. Results for 20 runs per procedure.
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